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Abstract
The quantum states of a d-dimensional fermion algebra are in one to one
correspondence with the subsets of a d-element universal set. In this paper we
use this set theoretical motivation to construct a one-parameter deformation of
the fermion algebra and extend it to a d-dimensional generalization which is
invariant under the group U(d). This discrete fermionic oscillator system is
extended to the continuous case. We also show that the q-deformation of these
systems is related to supercovariant q-oscillators.

PACS numbers: 03.65.Fd, 02.10.Ab, 05.30.Fk

1. Introduction

The importance of the single fermion algebra defined by the relations

cc∗ + c∗c = 1 c2 = 0 (1)

is well known in various branches of physics. This algebra has a unique two-dimensional
representation which corresponds to the vacuum and one-particle states of the single fermion.

The d-dimensional generalization,

cic
∗
j + c∗

j ci = δij cicj + cjci = 0 (2)

enjoys a U(d) symmetry which acts on the annihilation operator ci by

ci →
∑
j

uij cj (3)

where the complex matrix {uij } is unitary. A nontrivial extension of this algebra which
generalizes (2) is widely used in field theory and entails replacement of the discrete indices
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i, j to continuous indices p, q together with replacement of the Kronecker δij with the Dirac
δ(p − q) and reads

c(p)c∗(q) + c∗(q)c(p) = δ(p − q)

c(p)c(q) + c(q)c(p) = 0.
(4)

Not all fermion-like algebras enjoy this generalization. The most well-known example being

cic
∗
i + c∗

i ci = 1 c2
i = 0 cicj = cj ci cic

∗
j = c∗

j ci i �= j. (5)

This algebra just like (2) has a 2d-dimensional representation and reduces to (1) for the one-
dimensional case but does not enjoy U(d) symmetry and cannot be consistently generalized
to continuous indices in the manner that (2) can be generalized to (4). Physically, it can be
said that, due to the condition c2

i = 0, (5) obeys the Pauli exclusion principle which says
that two identical fermions cannot be put into the same state. However, it does not obey the
anti-symmetry of the wavefunction under fermion interchange.

Various q-deformations of the fermion algebra (1) and its supersymmetric generalizations
have been investigated [1–12]. The multidimensional version of q-deformed fermion algebra
[12] cannot be generalized to be the continuous case as in (4) in a smooth manner. In some
sense all one-dimensional generalized (deformed) fermion algebras are alike [8] since the
physical requirement of the vacuum and one-particle states gives rise to a two-dimensional
algebra and thus any element of this algebra can be expressed in the form

a = αc + βc∗ + γ c∗c + δcc∗ α, β, γ, δ ∈ C (6)

where c and c∗ are the conventional fermion creation and annihilation operators and C indicates
complex numbers. However for multidimensional and especially continuous generalizations
such as (4), deformation will be nontrivial since not all fermion algebras, e.g. (5), can be made
continuous. In this paper, we will investigate a fermion algebra whose continuous version
reads

a(p)a∗(q) + a∗(q)a(p) = s(p)a∗(q) + s(q)a(p) + δ(p − q)− s(p)s(q)

a(p)a(q) + a(q)a(p) = s(p)a(q) + s(q)a(p)
(7)

where s(p) is a deformation function satisfying∫ ∞

−∞
|s(p)|2 dp < 1. (8)

For s(p) ≡ 0, the undeformed, continuous fermion commutation relations (4) are obtained.
In section 2, we will construct the one-dimensional generalized fermion algebra and find

its unique representation. In section 3, we will present the multidimensional and the continuous
extensions. Section 4 discusses a q-deformation of the generalized fermion algebra which
turns out to be related to a supersymmetric system of q-bosons and q-fermions. Section 5 is
reserved for conclusions.

2. The generalized fermion algebra

The motivation leading to (7) involves several steps. The first step is the observation that the
concept of a state containing at most one fermion is similar to the concept of a set at most
containing one of a given element. We start by considering a Hilbert space formulation of
sets. We assume every subset of a given finite universal set to be a normalizable vector in
a Hilbert space. We start our construction with an operator a∗

i which we identify with the
union operator which unites the ith element of the universal set to a given set which will be
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described by a vector in a Hilbert space. We consider a∗
i for fixed i and omit the index i. Since

uniting the same element any nonzero number of times does not change the set, a∗ should
satisfy

a∗2 = s̄a∗ (9)

where s is a complex number. The case s = 0 gives the fermion algebra. For this case the
creation operator a∗ almost behaves like an operator which unites an element of the universal
set with a given set. However, due to the fermionic nature of a∗, applying it twice gives zero
whereas in set theory adding an element to the set any number of times does not change the
set. Thus we are led to consider that s �= 0. We will now show that up to a rescaling of a and
a∗, (9) implies

aa∗ = −a∗a + s̄a + sa∗ + 1 − ss̄. (10)

The normalization is chosen such that a∗a has eigenvalues 0 and 1 so that it can be identified
with the fermionic number operator. To prove (10) let

aa∗ + a∗a − s̄a − sa∗ = D. (11)

Then one readily computes that D is central, i.e. in a representation D will be represented by
a multiple of the identity. Let us denote the eigenvector of a∗a with the eigenvalue λ by |λ〉.
It follows that a∗|λ〉 is also an eigenvector corresponding to the eigenvalue ss̄ + D. Then

(a∗a)2|λ〉 = λ2|λ〉 (12)

a∗(aa∗a)|λ〉 = a∗(ss̄ + D)a|λ〉 = λ(ss̄ + D)|λ〉. (13)

Comparing (12) and (13) it follows that

λ(λ − ss̄ − D) = 0. (14)

Therefore, eigenvalues of a∗a can either be 0 or ss̄ +D. For a nontrivial solution ss̄ +D > 0,
by rescaling the operators a, a∗ and the complex number s, we may set

aa∗ = −a∗a + s̄a + sa∗ + 1 − ss̄ a2 = sa (15)

so that a∗a has eigenvalue 0 or 1. It also follows that

aa∗a = a. (16)

Applying (16) to |λ〉, we have for λ �= 1

a|0〉 = 0. (17)

From (9), multiplying on the right by a and applying the resulting equation to |λ〉, it follows
that

a∗|1〉 = s̄|1〉. (18)

Taking the Hermitian conjugate of (16) and applying this to |λ〉, it follows that

a∗|0〉 = α|1〉 (19)

so that

〈0|aa∗|0〉 = αᾱ〈1|1〉. (20)

If we replace aa∗ in (20) by (15) and use that |0〉, |1〉 are orthonormal, the result gives
αᾱ = 1 − ss̄, hence 0 < |s| < 1. The phase of α can be absorbed into the definition of |0〉.
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Applying (15) on |1〉
a|1〉 = s|1〉 +

√
1 − ss̄|0〉. (21)

Hence the actions of the operators a, a∗ are given by (17), (18), (19) and (21) where
α = √

1 − ss̄. Since the nontrivial representation of the algebra (15) for |s| < 1 is two-
dimensional, we can consider this algebra as a deformation of the fermion algebra.

Taking the orthonormal vectors |0〉 and |1〉 to be the standard basis, the matrices of the
operators a, a∗a are given by

a =
(

0
√

1 − ss̄

0 s

)
a∗a =

(
0 0
0 1

)
. (22)

Note that for s �= 0, aa∗ is not diagonal in this basis since a∗a and aa∗ do not commute. We
will name the algebra characterized by the commutation relations (15), where 0 < |s| < 1
as the quasi-fermion algebra. As we have shown, the only representation of this algebra is
two-dimensional. In fact, this representation shows that the quasi-fermion algebra can be
obtained by a (nonlinear) transformation on the usual fermion algebra by

a = (1 − ss̄)1/2c + sc∗c. (23)

It can be directly verified that a satisfies (15). The inverse transformation is given by

c = (1 − ss̄)−1/2a − s(1 − ss̄)−1/2a∗a. (24)

As the simplest physical application we can consider a quasi-fermion interacting through
a Hamiltonian

H = εa∗a + λ(a + a∗). (25)

For s = 0 this describes an ordinary fermion and the energy levels are perturbed such that to
lowest order in λ

E1 = −λ2

ε
E2 = ε +

λ2

ε
. (26)

For general s, it can be shown that the energy levels are perturbed such that

E1,2 = 1
2 (1 + 2λs ±

√
1 + 4λs + 4λ2) (27)

which shows that the perturbation to higher state is of order λ for s �= 0:

E1 = ε + 2λs + · · · . (28)

Hence a quasi-fermion obeying (9) may exhibit measurable differences from an ordinary
fermion.

3. The multidimensional and the continuous case

A d-dimensional covariant generalization of this algebra is possible provided that s is
generalized to possess d components which transform covariantly under U(d). We propose

aia
∗
j + a∗

j ai = sia
∗
j + s̄j ai + δij − si s̄j

aiaj + ajai = siaj + sj ai si ∈ C

∑
i

|si |2 < 1 (29)

i, j = 1, 2, . . . , d . This algebra is invariant under the action of the U(d) group which
transforms the complex vector si together with the operators ai :
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ai →
∑
j

uijaj si →
∑
j

uij sj . (30)

By a unitary transformation we can choose all the si to be equal. The subgroup of U(d)

which leaves this vector invariant is U(d − 1). The permutation group Sd which permutes the
ai is a discrete subgroup of this U(d − 1).

To prove that (29) constitutes a deformed fermion algebra we construct a 2d-dimensional
representation of (29). When the parameters si = 0 the quasi-fermion algebra (29) will
reduce to the usual fermion algebra and this representation will reduce to the 2d-dimensional
unique representation of the fermion algebra. First we can perform a U(d) transformation to
transform the si to a given direction



s1

s2

s3

...

sd




→




s

0
0
...

0




s ∈ R (31)

which at the same time will transform the ai into bi .
Since the norm of a vector is invariant under U(d), we can choose

s =
√

|s1|2 + |s2|2 + · · · + |sd |2. (32)

The commutation relations in this basis become

b1b
∗
1 + b∗

1b1 = s(b∗
1 + b1) + 1 − s2

b2
1 = sb1

(33a)

b1b
∗
i + b∗

i b1 = sb∗
i

b1bi + bib1 = sbi
(33b)

bib
∗
j + b∗

j bi = δij

bibj + bjbi = 0 i, j = 2, 3, . . . , d.
(33c)

It follows that the commutation relations satisfied by the bi, b
∗
i among themselves for

i, j = 2, 3, . . . , d (33c) are just standard fermion commutation relations. It can be shown that

b1 = a ⊗ I ⊗ I ⊗ I ⊗ · · · ⊗ I ⊗ I

b2 = ρ ⊗ c ⊗ I ⊗ I ⊗ · · · ⊗ I ⊗ I

b3 = ρ ⊗ σ ⊗ c ⊗ I ⊗ · · · ⊗ I ⊗ I

...

bd = ρ ⊗ σ ⊗ σ ⊗ σ ⊗ · · · ⊗ σ ⊗ c

(34)

where a, a∗ satisfy (15), and c, c∗ satisfy (1). ρ satisfies

aρ + ρa = sρ ρ2 = 1 ρ = ρ∗ (35)

and is given by

ρ = (1 − ss̄)−1/2(aa∗ − a∗a). (36)

Since (15) requires |s| < 1 the si have to satisfy that the norm of the vector si is less than unity
(29). The explicit representations are given by
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a =
(

0
√

1 − ss̄

0 s

)
c =

(
0 1
0 0

)

σ =
(

1 0
0 −1

)
ρ =

(√
1 − ss̄ s

s −√
1 − ss̄

)
.

(37)

The ai, a∗
i which satisfy (29) are given by a unitary transformation on (34) where

si = ui1s ai =
∑
j

uijbj . (38)

Thus the deformed fermion algebra defined in (29) is consistent. For d = 2 this computation
gives

a1 =




0 −s̄2r s1r −s̄2

0 0 0 s1r

0 −s̄2 s1 s̄2r

0 0 0 s1


 a2 =




0 s̄1r s2r s̄1

0 0 0 s2r

0 s̄1 s2 −s̄1r

0 0 0 s2


 (39)

where r =
√(|s1|2 + |s2|2

)−1 − 1.
We now show that (29) has a continuous generalization just as the standard fermion

algebra (2) has the continuous generalization (4). We replace the discrete indices i, j by the
continuous indices p, q and replace the summation over i by an integral over p. We obtain

a(p)a∗(q) + a∗(q)a(p) = s(p)a∗(q) + s(q)a(p) + δ(p − q)− s(p)s(q)

a(p)a(q) + a(q)a(p) = s(p)a(q) + s(q)a(p)

∫ ∞

−∞
|s(p)|2 dp < 1.

(40)

Here s(p) can be called a deformation wavefunction and the case s(p) ≡ 0 corresponds to the
undeformed fermionic oscillator (4). For the discrete case, the total number operator

N =
∑
i

a∗
i ai (41)

has integer eigenvalues. This can be shown by using the invariance of N under the unitary
group U(d). Performing this transformation gives

N =
∑
i

b∗
i bi (42)

where b∗
i , bi satisfy (33). Each b∗

i bi term has eigenvalue 0 or 1. Moreover these terms
commute with each other. Therefore they can be simultaneously diagonalized. This proves
that N has integer eigenvalues. It can be shown that just as the b∗

i bi terms in (42) commute
among themselves the a∗

i ai terms in (41) also do so. Each a∗
i ai term in (41) has eigenvalues

0, 1. This is because putting i = j in (29) gives the algebra (15) with a = ai and s = si .
It is plausible that the limit leading to (40) preserves this property of N having integer

eigenvalues just as the limit leading to (4) preserves this property. Thus the total number
operator for the continuous case can be defined by

N =
∫ ∞

−∞
a∗(p)a(p) dp. (43)

Although equations (40) are considerably more complicated compared to (4) it is possible to
use this algebra for physical applications. The formalism can easily be generalized to higher
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dimensions and can be made to include more than one kind of fermion. For d fermions in
three dimensions, the algebra is given by

ai(p)a
∗
j (q) + a∗

j (q)ai(p) = si(p)a
∗
j (q) + sj (q)ai(p) + δij δ

3(p − q) − si(p)sj (q)

ai(p)aj (q) + aj (q)ai(p) = si(p)aj (q) + sj (q)ai(p),

∫ ∞

−∞

∑
i

|si(p)|2 d3p < 1

Ni =
∫ ∞

−∞
a∗
i (p)ai(p) d3p N =

∑
i

Ni i = 1, 2, . . . , d

(44)

where Ni and N have integer eigenvalues.

4. q-deformation and relation to q-SUSY algebra

In this section, we will present a q-deformation of the one-dimensional generalized fermion
algebra (15) and show that this deformation is equivalent to a supercovariant system of
q-oscillators [5, 11]. Thus q-deformation, in this example, brings supersymmetrization
introducing q-bosons in addition to q-fermions. To achieve this we first define

f = s − a (45)

where s is now interpreted as a central operator and eliminate s from the algebra (15) including
the relations that s and s∗ commute with a and a∗. We obtain

aa∗ + f ∗f = a∗a + ff ∗ = 1 (46)

af = f a = 0 (47)

[a, a∗] = [f, f ∗] = [a∗, f ] = [f ∗, a]. (48)

A q-deformation of this algebra is given by keeping (46) and (47) but deforming the last two
commutators of (48)

[a, a∗] = [f, f ∗] = qa∗f − q−1f a∗ = qf ∗a − q−1af ∗. (49)

To show that this system is equivalent to a SUSY system of oscillators we define

A = (a∗a2 + f 2f ∗)/(1 − q2) (50)

F = ff ∗a. (51)

The relations (46), (47), (49) show that A,F and their Hermitian conjugates satisfy

FF ∗ + F ∗F = 1 − (1 − q2)A∗A
AA∗ − q2A∗A = 1

AF = qFA

AF ∗ = qF ∗A
F 2 = 0.

(52)

This coincides with the one-dimensional supersymmetric algebras in [10, 12]. Its
representation [10] is given by the following action on the states |nb, nf 〉 wherenb = 0, 1, 2, . . .
is the number of deformed bosons and nf = 0, 1 is the number of deformed fermions
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A|nb, nf 〉 =
√

[nb]|nb − 1, nf 〉
A∗|nb, nf 〉 =

√
[nb + 1]|nb + 1, nf 〉

F |nb, 0〉 = 0

F |nb, 1〉 = qnb |nb, 0〉
F ∗|nb, 0〉 = qnb |nb, 1〉
F ∗|nb, 1〉 = 0

(53)

where [nb] = (1 − q2nb)/(1 − q2). As can be seen from the above relations A∗, A are the
deformed boson creation–annihilation operators whereas F ∗, F are the deformed fermion
creation–annihilation operators.

5. Conclusion

In this paper, we have discussed deformed fermion algebras starting from the relation
a2 = sa, our main objective being to construct the discrete and continuous multidimensional
extensions similar to that of the standard fermion algebra which corresponds to the case
s = 0. We have succeeded in doing this, however a question still remains unanswered.
Although we were able to q-deform the s �= 0 algebra and show that q-deformation
brings supersymmetrization introducing q-bosons, we have not been to able to extend this
q-deformation to the multidimensional and continuous cases. We remark that the complex
number s, in the process of q-deformation becomes an operator related to the bosonic sector
of the q-deformation. Perhaps, a multidimensional q-deformation requires that the parameter
q also becomes an operator.

References

[1] Sun C-P and Fu H-C 1989 J. Phys. A: Math. Gen. 22 L983
[2] Chakrabarti R and Jaganathan R 1991 J. Phys. A: Math. Gen. 24 L711
[3] Jing S and Xu J J 1991 J. Phys. A: Math. Gen. 24 L891
[4] Parthasarathy R and Viswanathan K S 1991 J. Phys. A: Math. Gen. 24 613
[5] Chaichian M, Kulish P and Lukierski J 1991 Phys. Lett. B 262 43
[6] Chen W-Y and Ho C-L 1993 J. Phys. A: Math. Gen. 26 4827
[7] Bonatsos D and Daskaloyannis C 1993 J. Phys. A: Math. Gen. 24 1589
[8] Solomon A and McDermott R 1994 J. Phys. A: Math. Gen. 27 2619
[9] Chung W-S 1996 Prog. Theor. Phys. 95 697

[10] Celik S, Celik S A and Arik M 1998 Mod. Phys. Lett. A 13 1645
[11] Chung W-S 1999 J. Phys. A: Math. Gen. 32 2605
[12] Chung W-S 1999 Phys. Lett. A 259 437


